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Abstract—Loco-Manipulation for humanoid robots aims to
enable robots to integrate mobility with upper-body tracking
capabilities. Most existing approaches adopt hierarchical ar-
chitectures that decompose control into isolated upper-body
(manipulation) and lower-body (locomotion) policies. While this
decomposition reduces training complexity, it inherently limits
coordination between subsystems and contradicts the unified
whole-body control exhibited by humans. We demonstrate that
a single unified policy can achieve a combination of track-
ing accuracy, large workspace, and robustness for humanoid
loco-manipulation. We propose the Unified Loco-Manipulation
Controller (ULC), a single-policy framework that simultaneously
tracks root velocity, root height, torso rotation, and dual-arm
joint positions in an end-to-end manner, proving the feasi-
bility of unified control without sacrificing performance. We
achieve this unified control through key technologies: sequence
skill acquisition for progressive learning complexity, residual
action modeling for fine-grained control adjustments, command
polynomial interpolation for smooth motion transitions, ran-
dom delay release for robustness to deploy variations, load
randomization for generalization to external disturbances, and
center-of-gravity tracking for providing explicit policy gradients
to maintain stability. We validate our method on the Unitree
G1 humanoid robot with 3-DOF (degrees-of-freedom) waist.
Compared with strong baselines, ULC shows better tracking
performance to disentangled methods and demonstrating larger
workspace coverage. The unified dual-arm tracking enables
precise manipulation under external loads while maintaining
coordinated whole-body control for complex loco-manipulation
tasks. The code and videos are available on our project website
at https://ulc-humanoid.github.io.

Index Terms—Humanoid Robots, Loco-Manipulation, Rein-
forcement Learning, Whole-Body Control

I. INTRODUCTION
Humanoid robots, with their human-like morphology, rep-

resent a promising paradigm for versatile robotic systems
capable of operating in human-designed environments. Recent
years have witnessed remarkable advances in locomotion [1,
2, 3, 4, 5, 6] and autonomous manipulation [7, 8, 9, 10, 11]
capabilities for humanoid platforms. These achievements are
enabled by the synergistic integration of high-level decision-
making layers, powered by Imitation Learning (IL) mod-
els [12, 13] or Vision-Language-Action (VLA) models [14,
15, 16], with sophisticated Loco-Manipulation Controllers
(LMCs) [17, 18, 19, 20, 21, 22] that translate high-level
commands into precise whole-body motions for autonomous
locomotion and dexterous dual-arm manipulation.
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An ideal Loco-Manipulation Controller (LMC) should
seamlessly translate whole-body motion commands into pre-
cise joint-level actions, minimizing the discrepancy between
commanded and executed motions while guaranteeing dy-
namic stability. However, designing effective LMCs involves
several critical architectural decisions that significantly impact
performance:

• Command Space Selection. Robot actions can be param-
eterized through various representations [20], including
joint positions, Cartesian pose targets, root velocity, and
root height. An effective command space should eliminate
potential conflicts between different command modalities
while enabling full exploration of the robot’s kinematic
and dynamic capabilities.

• Unified vs. Decoupled Control Architecture. Whole-
body controllers [23, 20, 24, 25, 21] can theoretically
achieve superior performance by coordinating all degrees
of freedom simultaneously, but are commonly perceived
as more challenging to train effectively compared to
specialized controllers. Alternatively, some approaches
decouple the LMC into separate upper and lower body
controllers [19, 22, 18, 17], which accelerates learning
but may compromise performance in scenarios requiring
tight coordination between locomotion and manipulation.

• Motion Capture vs. Procedural Training Data. Motion
capture data provides physically plausible whole-body
movement patterns, but inherent noise and kinematic
infeasibilities can significantly degrade tracking accu-
racy [23, 20, 24, 25, 26]. Additionally, distribution bias
in motion capture datasets poses risks when encoun-
tering out-of-distribution movements during deployment.
Procedurally sampled command spaces can mitigate dis-
tribution bias but are primarily limited to upper-body
motions, as the inherent instability of humanoid platforms
precludes obtaining stable leg references through random
sampling [17, 18, 19, 21].

These design choices present fundamental trade-offs that
significantly impact the practical deployment of humanoid
loco-manipulation systems. Each decision involves balancing
competing objectives: command space design must reconcile
expressiveness with feasibility, control architecture must weigh
coordination benefits against training complexity, and data
generation must balance physical plausibility with distribution
coverage. The challenge lies not in optimizing any single
aspect, but in finding the optimal combination of design deci-
sions that collectively enable robust, versatile, and deployable
loco-manipulation capabilities.

https://ulc-humanoid.github.io


Fig. 1: Diverse loco-manipulation capabilities enabled by ULC. The humanoid robot demonstrates various coordinated whole-
body actions including: picking up bread from a table and placing it in a refrigerator, pushing a cart with coordinated locomotion,
squatting to shovel sand from the ground, lifting boxes from the floor to table height with dual-arm coordination, picking up
dolls from the ground with hand switching and placing them on a sofa, sitting and playing ukulele with fine motor control,
placing items in a microwave with precise manipulation, cleaning kitchen surfaces with wiping motions, erasing blackboards
with arm coordination, and performing torso rotation in outdoor environments.

A. Objective of this Work

The objective of this work is to design a practical and versa-
tile loco-manipulation controller that balances design decisions
to best fit real-world scenarios. Specifically, we aim to develop
a command space that comprehensively covers the majority of
human mobility and manipulation scenarios while maintaining
physical feasibility and eliminating command conflicts. We
pursue a unified control architecture that coordinates the
entire body simultaneously to maximize workspace coverage
and enable tight coupling between locomotion and manipu-
lation, challenging the conventional wisdom that decoupled
approaches are necessary for practical deployment. To ensure
robustness and generalization, we adopt procedural command
generation rather than motion capture data, developing novel
training methodologies that mitigate the inherent challenges
of random sampling for humanoid locomotion while pre-

serving the distribution coverage advantages. Our goal is to
demonstrate that unified whole-body control can achieve both
the precision of specialized controllers and the coordination
benefits of integrated approaches, creating a system that is
not only theoretically sound but practically deployable in real-
world scenarios.

B. Contributions

To achieve these objectives, we propose the Unified Loco-
Manipulation Controller (ULC), a unified control framework
that employs massively parallel reinforcement learning (RL)
to accurately track procedurally sampled commands includ-
ing root velocity, root height, torso orientation, and arm
joint positions. This design choice deliberately simplifies leg
commands compared to full motion capture approaches, but
enables comprehensive coverage of the feasible command



space through principled random sampling while preserving
the coordination benefits of unified control. To realize these
theoretical advantages in practice, we identify and address
three fundamental technical challenges in developing ULC,
presenting novel solutions for each:

• Multi-Task Learning in Unified Control. Single-model
multi-task tracking for humanoid robots often suffers
from reduced single-task performance due to potential
conflicts between heterogeneous command modalities
and gradient interference across tasks [27]. We address
these issues through: (1) careful command space design to
ensure physical feasibility of command combinations, (2)
progressive command curriculum learning from simple
to difficult to enable systematic capability exploration,
(3) residual action modeling [28, 29, 5] for both arms
to enhance tracking precision, and (4) sequential skill
acquisition [30] where training on subsequent skills
begins only after achieving mastery of current capabil-
ities, ensuring comprehensive skill development without
catastrophic forgetting.

• Deployment-Realistic Command Generation. Out-of-
distribution commands during deployment can lead to
catastrophic failures [31]. While random sampling mit-
igates distribution bias, naive interval-based sampling
creates target discontinuities, whereas continuous inter-
polation produces overly smooth trajectories inconsistent
with real deployment scenarios. We develop a novel
sampling strategy that combines fixed-interval random
sampling with fifth-degree polynomial interpolation [32,
33] to generate smooth command transitions. To simulate
deployment-realistic command variations, we introduce
stochastic command release mechanisms where com-
mands may be buffered or released with certain prob-
abilities, ensuring all released commands remain within
the feasible sampling range while introducing instruction
mutations that may occur in actual deployment to enhance
robustness.

• Loaded Balance and Generalization. For arm position
tracking, controllers must maintain consistent perfor-
mance under varying payload conditions while preserv-
ing whole-body stability. While randomizing end-effector
masses [18] addresses dual-arm tracking accuracy under
load to a certain extent, maintaining stability requires
explicit balance considerations. We incorporate center-
of-mass tracking rewards [34] by computing the robot’s
center of mass with loaded body mass distributions and
encouraging the xy-plane projection to remain within
the support polygon defined by the feet. This approach
provides clear gradient signals for balance optimization
and demonstrably enhances stability under varying load
conditions.

Extensive experiments in both simulation and real-world
settings demonstrate that our approach achieves state-of-the-
art performance across a wide range of loco-manipulation
tasks, outperforming existing baselines in tracking accuracy,
workspace coverage, and robustness. Ablation studies further
confirm that each component of our framework is essential.

These results validate the effectiveness of our unified design
for robust, high-precision loco-manipulation.

II. RELATED WORK

A. Learning Legged Locomotion

Reinforcement learning has emerged as the dominant
paradigm for humanoid locomotion control, demonstrating
remarkable capabilities in learning complex walking gaits and
dynamic behaviors [35, 36, 37, 38, 33, 39, 40, 41, 42, 43]. The
evolution from traditional model-based approaches to learning-
based methods has been driven by the need to handle high-
dimensional control spaces, environmental uncertainties, and
the complexity of bipedal dynamics.

Early RL applications focused on basic locomotion tasks.
[42] established foundational principles for learning locomo-
tion policies to address the challenge of stable quadrupedal gait
generation. [41] introduced Multiplicity of Behavior (MoB)
to encode diverse locomotion strategies within a single policy,
enabling real-time strategy selection for different tasks without
retraining, though focused on quadrupedal locomotion.

[37] pioneered practical RL deployment on real humanoid
platforms to solve sim-to-real transfer challenges, establish-
ing fundamental principles including actuator modeling and
environmental robustness, though limited to basic walking
gaits. [35] advanced the field through sophisticated training
frameworks to address multi-task learning complexity, incor-
porating curriculum learning and multi-objective optimization,
but requires careful hyperparameter tuning. [38] explored
perception-locomotion integration to solve visual navigation
challenges with lidar height map. [33] provided standardized
simulation environments to address reproducibility issues. [39]
addresses motion smoothness challenges through Lipschitz-
constrained policies to eliminate jerky movements. Several
other works have explored balance recovery, energy efficiency,
and adaptive gait generation, each addressing specific locomo-
tion limitations.

Despite significant progress in locomotion, these RL-based
approaches primarily focus on walking capabilities and lack
integrated manipulation functionalities. The fundamental lim-
itation is that they only enable basic locomotion without
the ability to perform meaningful manipulation tasks, limit-
ing their practical applicability in real-world scenarios that
require coordinated loco-manipulation behaviors. Additional
challenges remain in sample efficiency, safety guarantees, and
generalization across diverse environments and tasks.

B. Humanoid Whole-Body Motion Capture Tracking

Humanoid whole-body motion tracking aims to enable
robots to reproduce complex human motions from diverse
datasets [1, 34, 5, 6, 45, 26, 46, 23, 47, 48, 24, 49, 50, 51,
52, 53, 4]. Key challenges include morphological differences,
noise handling, and sim-to-real transfer.

Traditional approaches have primarily relied on model-
based methods such as inverse kinematics, trajectory optimiza-
tion, and model predictive control (MPC). While MPC can
handle stability constraints and dynamics to some extent, these



Method Architecture Legs Torso Yaw Torso Pitch Torso Roll Dual Arms Workspace Precision

HOMIE [19] Decoupled RL-1 PD - - PD Medium Medium
FALCON [18] Decoupled RL-1 RL-1 RL-1 RL-1 RL-2 Medium High
JAEGER [22] Decoupled RL-1 RL-1 - - RL-2 Medium High
AMO [21] Decoupled RL RL RL RL PD Large Medium
SoFTA [44] Decoupled RL-1 RL-1 - - RL-2 Medium Medium
R2S2 [2] Unified RL RL RL RL RL Medium Medium

ULC (Ours) Unified RL RL RL RL RL Large High

TABLE I: Comparison of humanoid loco-manipulation controllers. Colors indicate control types: Blue/Red: RL, Orange: PD,
Purple: Unified RL, Gray: Not controlled.

methods face significant limitations when dealing with com-
plex whole-body motion tracking from human demonstrations.
They struggle with the high-dimensional nature of humanoid
systems, require accurate dynamic models that are difficult to
obtain, and cannot easily adapt to the nuanced coordination
patterns present in human motion data. The shift to deep
RL enabled learning-based approaches that can directly learn
complex coordination patterns from data without requiring
explicit dynamic models. [51] pioneered adversarial motion
priors to solve natural movement generation problems, though
requires careful discriminator design and can be unstable.

[23] trains whole-body policies using large-scale motion
capture datasets to address dexterous manipulation challenges,
but suffers from noise and kinematic inconsistencies in cap-
tured data. [26] addresses data quality issues through teacher-
student distillation to improve motion expression, yet exhibits
tracking errors in fine-grained movements due to distribution
mismatch. [48] relaxes leg constraints while requiring upper
body tracking to enable natural social interactions, but there
is still much room for improvement in tracking accuracy
and workspace. [20] proposes neural architectures unifying
both through shared representations to address coordination
issues, though faces deployment challenges due to state space
complexity.

[34] enables extreme motion reproduction through advanced
processing pipelines to solve dynamic motion challenges,
but lacks generalizability across different robots and requires
extensive retraining. [6] explores visual imitation from video
demonstrations to reduce motion capture dependency, but faces
challenges in visual perception accuracy.

Our ULC deliberately avoids motion capture dependency,
eliminating inherent noise and artifacts while training from
scratch with carefully designed mechanisms for superior track-
ing and generalization.

C. Humanoid Loco-Manipulation Controller

Humanoid loco-manipulation requires coordinating locomo-
tion and manipulation while maintaining tracking accuracy and
robustness [17, 18, 19, 20, 21, 22, 54, 55, 56, 57, 11, 58,
59, 60, 61, 62, 2, 44]. The complexity involves simultaneous
optimization of balance, end-effector positioning, and environ-
mental adaptation.

Traditional decoupled approaches separate leg and arm
control to simplify training complexity. [19] uses RL for legs

and PD for arms to address basic loco-manipulation coordi-
nation, but results in poor arm tracking under gravitational
loads and limited torso workspace. [18] jointly trains upper
body policies with force curriculum to solve force adaptation
challenges, but remains limited by restricted torso rotation and
coordination deficiencies. [22] presents JAEGER with separate
upper and lower body controllers supporting both coarse-
grained root velocity tracking and fine-grained joint angle
tracking, though relies on motion capture data retargeting that
can introduce artifacts. [44] introduces SoFTA framework with
separate upper-body and lower-body agents at different fre-
quencies to solve end-effector stabilization during locomotion,
but it has limited working space. [17] treats locomotion and
manipulation as manifestations of the same control problem
to solve architectural limitations, but the dual-arm tracking
performance of PD control needs to be further improved. [21]
combines trajectory optimization with RL through hierarchical
design to address motion planning challenges, achieving better
performance but introducing computational overhead and both
arms are still controlled by PD. [2] proposes Real-world-Ready
Skill Space (R2S2) to address large-space reaching through
skill library ensembling, enabling diverse whole-body skills
but requiring careful primitive skill design. Tab. I shows a
horizontal comparison of various methods.

The fundamental trade-off remains between training com-
plexity and performance. Decoupled designs offer simplicity
but sacrifice coordination. Unified approaches promise better
performance but face training complexity challenges. Our ULC
addresses these limitations through end-to-end policy archi-
tecture trained specifically for loco-manipulation. By eschew-
ing decoupled paradigms, ULC enables natural whole-body
coordination while optimizing tracking accuracy, workspace
coverage, and robustness.

III. PROBLEM FORMULATION
We formulate the humanoid loco-manipulation task as a

goal-conditioned Markov Decision Process (MDP) defined
by the tuple M = ⟨S,A,G, P,R, γ⟩, where S is the state
space, A is the action space, G is the goal (command) space,
P : S ×A×G → ∆(S) is the transition probability function,
R : S × A× G → R is the reward function, and γ ∈ [0, 1) is
the discount factor.

The policy πθ : S × G → ∆(A) is parameterized by
neural network weights θ and maps the concatenated state-
goal observations to a probability distribution over actions:



Parameter Unit Range

Linear Velocity X m/s [-0.45, 0.55]
Linear Velocity Y m/s [-0.45, 0.45]
Angular Velocity Z rad/s [-1.2, 1.2]
Root Height m [0.3, 0.75]
Torso Rotation Yaw rad [-2.62, 2.62]
Torso Rotation Roll rad [-0.52, 0.52]
Torso Rotation Pitch rad [-0.52, 1.57]
Arm Joint Positions - Robot Design Limits

TABLE II: Components and ranges of command space.

πθ(at|st, gt) = N (µθ(st, gt),Σθ(st, gt)) (1)

where µθ and Σθ represent the mean and covariance matrix
of the Gaussian policy distribution.

A. State Space and Observation Design

The state space S consists of proprioceptive observations
oprop ∈ Rns that capture the robot’s internal state without
external sensing modalities. The proprioceptive observation
vector at time t is defined as:

o(t)
prop =



q
(t)
joint

q̇
(t)
joint

ω
(t)
base
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(t)
proj

at−1

gt


(2)

where:
• q

(t)
joint ∈ Rnj represents joint positions for nj actuated

joints
• q̇

(t)
joint ∈ Rnj denotes joint velocities

• ω
(t)
base ∈ R3 represents base angular velocity

• g
(t)
proj ∈ R3 denotes gravity projection vector in base

frame
• at−1 ∈ Rnj is the previous timestep’s action
• gt ∈ Rng is the current command
To enhance temporal reasoning and enable smooth control

transitions, the policy observation incorporates both current
and historical observations. The complete policy observation
is formed by concatenating multiple timesteps:

st =
[
o(t)
prop,o

(t−1)
prop , . . . ,o(t−k+1)

prop

]T
(3)

where k is the number of historical timesteps included in
the policy observation.

B. Command Space Design and Mathematical Formulation

To enable efficient curriculum learning and prevent in-
terference between different skill components, we design a
hierarchically structured command space without mutual de-
pendencies. The command space g ∈ G ⊂ Rng is factorized
into independent subspaces:

g = [gloco, gtorso, garms]
T ∈ Gloco × Gtorso × Garms (4)

where each subspace is defined as follows:
Locomotion Commands: The locomotion commands are

represented as gloco = [vxy, ωz, hpelvis]
T ∈ R4, where the

components are defined as:

vxy = [vx, vy]
T ∈ [−vmax, vmax]

2 (planar velocities)
(5)

ωz ∈ [−ωmax, ωmax] (yaw angular velocity) (6)
hpelvis ∈ [hmin, hmax] (pelvis height) (7)

Torso Orientation Commands: The torso orientation com-
mands are specified as gtorso = [θz, θx, θy]

T ∈ R3

The torso orientation follows the ZXY Euler angle con-
vention (yaw-roll-pitch), ensuring that the rotation sequence
remains within the robot’s kinematic constraints. The rotation
matrix is computed as:

Rcmd
torso = Rz(θz)Rx(θx)Ry(θy) (8)

where:

Rz(θz) =

cos θz − sin θz 0
sin θz cos θz 0
0 0 1

 (9)

Ry(θy) =

 cos θy 0 sin θy
0 1 0

− sin θy 0 cos θy

 (10)

Rx(θx) =

1 0 0
0 cos θx − sin θx
0 sin θx cos θx

 (11)

Arm Joint Commands: The arm joint commands are
defined as garms = [qleft, qright]

T ∈ Rnarm

Each arm configuration is constrained by joint limits as
follows:

qleft, qright ∈
narm/2∏

i=1

[qi,min, qi,max] (12)

C. Action Space and Control Interface
The action space A consists of target joint positions for

all actuated degrees of freedom, which can be expressed as
follows:

at = ([qtarget
legs , qtarget

torso , qtarget
arms ]T · αscale + qdefault) ∈ Rnj

(13)
where αscale = 0.25 is the action scaling factor and qdefault

represents the default joint positions. For arm control, the
policy outputs are combined with desired positions through
residual modeling as follows:

qfinal
arms = aarms + qdesired

arms (14)

where qdesired
arms represents the desired arm positions. This

residual approach enables fine-grained control adjustments
while maintaining stability (detailed in Sect. IV-D).

The actions are executed through a PD controller with feed-
forward torque compensation, formulated as follows:

τ t = Kp(q
target
t − qt)−Kdq̇t (15)

where Kp and Kd are diagonal gain matrices.



Fig. 2: Visualization of random sampling of torso rotations
and upper body joint positions.

D. Command Space Constraints and Operational Ranges

Each command component operates within carefully defined
bounds that ensure physical realizability and safe operation
while maximizing the robot’s operational capabilities.

Velocity Command Constraints: The planar velocities are
constrained within stable limits as follows:

vx ∈ [−vx,max, vx,max] = [−0.45, 0.55] m/s (16)
vy ∈ [−vy,max, vy,max] = [−0.45, 0.45] m/s (17)

Angular Velocity Constraints: The yaw angular velocity
is bounded as follows:

ωz ∈ [−ωmax, ωmax] = [−1.2, 1.2] rad/s (18)

Height Command Range: The pelvis height operates
within the kinematic workspace as follows:

hpelvis ∈ [hmin, hmax] = [0.3, 0.75] m (19)

The lower bound hmin corresponds to the maximum crouch
position, while hmax represents the fully extended standing
height, hmin and hmax are determined by the leg kinematics
and stability considerations.

Torso Orientation Bounds: The torso orientation angles
are constrained to maintain balance and prevent kinematic
singularities as follows:

θz ∈ [−2.62, 2.62] (yaw) (20)
θx ∈ [−0.52, 0.52] (roll) (21)
θy ∈ [−0.52, 1.57] (pitch) (22)

The asymmetric pitch range reflects the robot’s ability
to lean forward more than backward due to biomechanical
considerations.

Arm Joint Constraints: Each arm joint qarm,i is bounded
by mechanical limits, which can be expressed as follows:

qarm,i ∈ [qi,min, qi,max], i = 1, . . . , narm (23)

where the specific bounds vary per joint according to the
robot’s mechanical design.

The complete command specifications and operational
ranges are detailed in Tab. II and visually displayed in Fig.
2.

IV. UNIFIED LOCO-MANIPULATION CONTROL

We present ULC, a unified and fine-grained controller for
humanoid loco-manipulation that leverages massive parallel
reinforcement learning to train a single policy from scratch.
Our framework systematically addresses the fundamental chal-
lenges of high-dimensional exploration and skill coordination
through four key technical innovations:

1) Sequential skill acquisition with adaptive curriculum
2) Command interpolation with stochastic delay model-

ing
3) Load generalization through dynamic mass distribution

and center-of-mass tracking
4) Residual action modeling for stable training and pre-

cise upper body tracking

The core innovation of ULC lies in its systematic decompo-
sition of the complex loco-manipulation problem into a hierar-
chy of manageable sub-skills, each governed by carefully de-
signed curriculum learning strategies. This principled approach
enables stable learning of high-dimensional behaviors while
maintaining robustness to real-world deployment conditions.

A. Sequential Skill Acquisition and Adaptive Curriculum
Learning

To address the fundamental challenge of inefficient explo-
ration in high-dimensional command spaces, ULC employs a
sequential skill acquisition strategy with adaptive command
curriculum. The policy progressively masters skills following
a carefully designed hierarchical sequence. This sequential
approach prevents catastrophic forgetting and ensures robust
acquisition of fundamental capabilities before advancing to
more complex behaviors.

1) Mathematical Framework for Curriculum Progression:
We formalize the curriculum learning process through a struc-
tured progression system with rigorous mathematical founda-
tions. Let T = {T1, T2, T3} represent the ordered set of skills
to be learned sequentially, where:

T1 : Base velocity tracking (vxy, ωz) (24)
T2 : Base height tracking (hpelvis) (25)
T3 : Torso and arm tracking (gtorso, garms) (26)

For each skill Ti, we define a curriculum parameter αi(t) ∈
[0, 1] that controls the difficulty progression over training
time t. The curriculum advancement follows a reward-based
gating mechanism that evaluates multiple performance metrics
simultaneously:

αi(t+ 1) =

{
min{1, αi(t) + ∆α} if Ci(t) = True

αi(t) otherwise
(27)

where ∆α = 0.05 represents the curriculum increment. The
advancement conditions Ci(t) are specifically designed based
on empirical validation:



Fig. 3: Method overview of the Unified Loco-Manipulation Controller (ULC). Our approach employs massively parallel
reinforcement learning to train a single unified policy that tracks procedurally sampled commands including root velocity, root
height, torso orientation, and arm joint positions. The framework addresses multi-task learning challenges through sequential
skill acquisition with adaptive curriculum, deployment-realistic command generation with interpolation and random delay, and
loaded balance optimization with center-of-mass tracking.

a) Height Curriculum Advancement (C2): The height
curriculum advancement condition implements a multi-criteria
evaluation that ensures the robot has mastered fundamental lo-
comotion skills before introducing height variation challenges.
The condition is mathematically defined as:

C2(t) = Cheight(t) ∧ Cvelocity(t) ∧ Chip(t) (28)

where each component evaluates specific performance met-
rics with empirically-tuned thresholds:

Cheight(t) = Ravg
height(t) ≥ 0.85 · wheight (29)

Cvelocity(t) = Ravg
vel (t) ≥ 0.8 · wvel (30)

Chip(t) = Ravg
hip (t) ≥ 0.2 · |whip| (31)

Here, Ravg
height(t) = exp(−|h − h∗|2/σ2

height) represents the
height tracking reward with weight wheight = 1.0, Ravg

vel (t) =
exp(−∥vxy−v∗

xy∥2/σ2
vel) denotes the velocity tracking reward

with weight wvel = 1.0, and Ravg
hip (t) is the hip deviation

penalty with weight whip = −0.15.
b) Upper Body Curriculum Advancement (C3): The up-

per body curriculum advancement implements a comprehen-
sive condition that requires mastery of both arm tracking and
torso control capabilities, while simultaneously maintaining all
previously acquired skills. The advancement criterion is:

C3(t) = Cupper(t) ∧ Ctorso(t) ∧ Cprev(t) ∧ Ccomplete(t) (32)

The individual components are rigorously defined as:

Cupper(t) = Ravg
upper(t) ≥ 0.7 · wupper (33)

Ctorso(t) = Ravg
torso(t) ≥ 0.8 · wtorso (34)

Cprev(t) = Cheight(t) ∧ Cvelocity(t) ∧ Chip(t) (35)
Ccomplete(t) = α2 ≥ 0.98 (36)



where Ravg
upper(t) = exp(−∥qupper − q∗

upper∥2/σ2
upper) denotes

the upper body joint tracking reward with weight wupper = 1.0,
and Ravg

torso(t) =
1
4 (exp(−e

2
yaw/σ

2
torso) + exp(−e2roll/σ

2
torso) + 2 ·

exp(−e2pitch/σ
2
torso)) represents the torso orientation tracking

reward with weight wtorso = 1.0.
This multi-criteria gating mechanism ensures that curricu-

lum progression occurs only when all prerequisite skills are
sufficiently mastered, thereby preventing catastrophic forget-
ting and maintaining stable performance across all learned
capabilities.

c) Skill-Specific Curriculum Design: Base Velocity
Tracking Curriculum: The velocity command sampling em-
ploys the full range throughout training. The curriculum pa-
rameter α1 does not directly constrain the velocity ranges, but
rather the policy gradually learns to handle increasingly com-
plex velocity commands through the reward-based progression
system.

Height Tracking Curriculum: The height command range
is dynamically adjusted based on curriculum progress. The
effective range evolves according to:

hcurr
range =

(
horig

min + (1− α2) · (horig
max − horig

min), h
orig
max

)
(37)

The curriculum starts from the maximum height horig
max =

0.75 m (standing position) and gradually expands to include
crouching positions with minimum height horig

min = 0.3 m as α2

increases.
Upper Body Tracking Curriculum: For torso rotation and

arm joint position commands, we employ exponential distri-
bution sampling to control movement complexity [19]. The
curriculum-adapted sampling is based on inverse transform
sampling:

rupper = −
1

λ(α3)
ln(1− u+ u · e−λ(α3)) (38)

where u ∼ U(0, 1) and the curriculum parameter is:

λ(α3) = 20(1− α3 · 0.99) (39)

The final joint commands are computed as:

qupper = qbound · rupper · sign(N (0, 1)) (40)

where qbound represents the joint limit bounds. This exponen-
tial sampling strategy ensures conservative movements initially
(α3 = 0.05), progressively expanding to the full joint space
as α3 → 1.0.

d) Curriculum Advancement Algorithm: The complete
curriculum learning algorithm integrates all the above compo-
nents into a unified framework that systematically progresses
through skill acquisition stages. The algorithm is formalized
in Algorithm 1, which demonstrates the precise interaction
between curriculum parameters, reward evaluation, and skill
progression logic:

Algorithm 1 ULC Sequential Skill Acquisition with Adaptive
Curriculum

1: Input: Skills T = {T1, T2, T3}, reward weights
{wvel, wheight, wupper, wtorso, whip}

2: Initialize: α1 ← 0.05, α2 ← 0.0, α3 ← 0.0, t← 0
3: Initialize: Active skills A ← {T1}, curriculum update

interval I ← 1000 steps
4: while training not converged do
5: t← t+ 1
6: // Sample commands based on current curriculum
7: for each skill Ti ∈ A do
8: Sample commands gi using curriculum parameter αi

9: end for
10: // Execute training step
11: g ← Concatenate sampled commands from active skills

12: Execute policy πθ(at|st, g)
13: Compute episode rewards and track running averages
14: Update policy parameters θ using PPO
15: // Evaluate curriculum advancement every I steps
16: if t mod I = 0 then
17: // Height curriculum advancement
18: if C2(t) and α2 < 0.98 then
19: α2 ← min(0.98, α2 + 0.05)
20: Reset tracked rewards for next evaluation
21: end if
22: // Upper body curriculum advancement
23: if C3(t) and α3 < 0.98 then
24: α3 ← min(0.98, α3 + 0.05)
25: Reset tracked rewards for next evaluation
26: end if
27: // Activate terrain curriculum when both skills mas-

tered
28: if α2 > 0.98 and α3 > 0.98 then
29: Enable terrain level progression
30: end if
31: end if
32: end while

B. Stochastic Delay Mechanism and Command Interpolation

To ensure stable arm movements and enhance training
robustness, we implement sophisticated command processing
mechanisms including quintic polynomial interpolation and
stochastic delay modeling that accurately reflects the actual
implementation.

a) Quintic Polynomial Interpolation: Upper body com-
mands are smoothly interpolated using quintic polynomial
transitions between randomly sampled target positions. The
interpolation is executed over a fixed interval Tinterval = 1.0 s,
with the instantaneous target position determined by:

qtarget(t) = qstart + (qgoal − qstart) · s(t) (41)

where s(t) is the quintic smoothing factor:

s(t) = 10t3 − 15t4 + 6t5, t ∈ [0, 1] (42)



0 10 20 30 40
Time Steps

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25
Jo

in
t P

os
iti

on
 (r

ad
)

Interpolated Trajectory
Delayed Trajectory
Trajectory Difference

Fig. 4: Illustration of the stochastic delay mechanism for upper
body command processing.

The movement step counter tstep is normalized as t =
min(tstep/Tinterval, 1.0) to ensure smooth transitions. This quin-
tic polynomial ensures C2 continuity with zero velocity and
acceleration at the endpoints, providing natural arm movement
characteristics.

b) Stochastic Delay Mechanism: The delay mechanism
is implemented through a sophisticated accumulation and
release system that operates on the incremental commands
between consecutive timesteps. Let ∆q(t) represent the in-
cremental change in target position at timestep t:

∆q(t) = q
(t)
target − q

(t−1)
theoretical (43)

where q
(t−1)
theoretical is the theoretical position from the pre-

vious timestep’s interpolation.
Delay Mask and Accumulation: At each timestep, a

random delay mask d(t) ∈ {0, 1}nj is generated:

d
(t)
j ∼ Bernoulli(pdelay), j = 1, . . . , nj (44)

where pdelay = 0.5 is the fixed delay probability. The
accumulation buffer A(t) stores delayed commands:

A(t) = A(t−1) ⊙ d(t) +∆q(t) ⊙ d(t) (45)

Command Release: The effective command executed at
timestep t combines immediate and delayed components:

∆q
(t)
effective = ∆q(t) ⊙ (1− d(t)) +A(t−1) ⊙ (1− d(t)) (46)

After execution, the accumulation buffer retains only the
still-delayed commands:

A(t) := A(t−1) ⊙ d(t) (47)

This mechanism ensures that delayed commands are re-
leased as soon as the delay mask permits, maintaining com-
mand fidelity while introducing beneficial temporal distur-
bances. The final desired upper body actions are updated as:

q
(t)
desired = q

(t−1)
desired +∆q

(t)
effective (48)

Fig. 4 shows the characteristic curve of the random delay
system intuitively.

C. Load Generalization and Balance Control

To improve robustness to varying payload conditions and
maintain dynamic stability, we implement comprehensive
load generalization and advanced balance control mechanisms
based on the actual implementation.

a) Random Load Distribution: During training, we apply
random masses to the robot’s wrist to simulate diverse payload
conditions. The mass randomization is applied to the robot’s
wrist masses during environment reset, with the total wrist
mass distribution modified to simulate carrying loads.

b) Center-of-Gravity Tracking: We implement a sophisti-
cated center-of-gravity tracking reward that maintains stability
across all motion phases. The reward function is formulated
as:

rCoG = exp

(
−
∥pxy

CoG − pxy
feet∥2

σ2
CoG

)
(49)

where pxy
CoG is the horizontal projection of the whole-body

center of gravity, and pxy
feet represents the midpoint between

the ankle positions.
Center-of-Gravity Computation: The whole-body center

of gravity is computed using the mass-weighted average of all
body segments:

pCoG =

∑nbodies
i=1 mipCoM,i∑nbodies

i=1 mi
(50)

where mi and pCoM,i are the mass and center-of-mass
position of body segment i, respectively.

Feet Support Reference: The support reference is com-
puted as the midpoint between the ankle positions:

pxy
feet =

pxy
left ankle + pxy

right ankle

2
(51)

This provides a consistent reference point for balance con-
trol that accounts for the robot’s current stance configuration.

Reward Function Integration: The balance control is inte-
grated into the reward function with a weight of wCoG = 0.5
and standard deviation σCoG = 0.2 m. This encourages the
policy to maintain the center of gravity close to the support
base, promoting stable locomotion and manipulation behaviors
even under varying load conditions. Fig. 5 illustrates the
center-of-gravity tracking reward mechanism.

D. Residual Action Modeling for Arm Control

We introduce a residual action modeling approach for arm
joints that enables precise tracking while maintaining training
stability. This approach draws inspiration from residual learn-
ing principles in robotics [28, 29, 5], providing a principled
method for dynamics compensation and stable training.

1) Mathematical Framework: The residual action modeling
framework is grounded in additive decomposition, where the
final control command combines a base policy output with a
residual correction term.

The mathematical formulation distinguishes between the
unified policy output and the residual application mechanism.
Let πθ(s, g) represent the unified policy that outputs actions
for all joints. The residual addition is applied post-processing:
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Fig. 5: Illustration of the center-of-gravity tracking reward
mechanism.

qprocessed = αscale · πθ(s, g) + qdefault (52)

qfinal[Jupper] = qprocessed[Jupper] + qdesired[Jupper] (53)

where qdefault represents the robot’s default joint positions,
and qdesired is generated through the command interpolation
and delay mechanism described in previous sections.

2) Theoretical Advantages of Residual Action Modeling:
The residual term qdesired acts as a feedforward component
that compensates for predictable dynamics, particularly grav-
itational effects on arm joints. This decomposition allows the
policy network πθ to focus on learning corrective adjustments
rather than reconstructing the entire control signal, signifi-
cantly reducing the learning complexity.

E. Implementation and Training Details

We implement ULC using massively parallel reinforce-
ment learning and train the policy using Proximal Policy
Optimization (PPO). For comprehensive implementation de-
tails, including domain randomization parameters, detailed
reward function formulation, and complete hyperparameter
specifications with network architecture details, please refer
to the Appendix. These implementation choices are validated
through extensive ablation studies and real-world deployment
experiments.

V. TELEOPERATION SYSTEM FOR ULC

The teleoperation system serves as the critical interface
between human operators and the humanoid robot, enabling
intuitive real-time control through virtual reality and remote
control inputs. As shown in Fig. 6, the system acquires
data from VR headsets [63, 64] and remote controllers, then
processes this data through custom algorithms to generate
structured robot commands at 100Hz frequency.

The teleoperation pipeline processes multiple input modal-
ities through five key subsystems: (1) head rotation mapping
to torso orientation, (2) head height variation to base height
control, (3) wrist position to dual-arm inverse kinematics, (4)
finger position to dexterous hand control, and (5) remote con-
troller input to base locomotion commands. This systematic
decomposition enables precise and safe human-robot motion
transfer while maintaining real-time responsiveness.

A. Head Rotation to Torso Orientation Mapping
The operator’s head orientation serves as the primary input

for controlling the robot’s torso rotation. VR head pose data
is acquired and processed through coordinate transformations
and safety constraints.

1) Head Pose Processing: The VR system provides head
pose data as a 4x4 transformation matrix Hhead ∈ SE(3). The
raw head matrix is processed through coordinate transforma-
tions:

H robot = T openxr
robot Hhead(T

openxr
robot )−1 (54)

where T openxr
robot is the calibration transformation matrix be-

tween OpenXR and robot coordinate systems.
2) Torso Orientation Extraction: The torso orientation is

extracted from the head rotation matrix and constrained for
safety:

Rhead = H robot[0 : 3, 0 : 3] (55)
[yaw, pitch, roll] = euler(Rhead, ‘zyx’) (56)

yawclipped = clamp(yaw,−2.62, 2.62) (57)

pitchclipped = clamp(pitch,−0.52, 1.57) (58)

rollclipped = clamp(roll,−0.52, 0.52) (59)

B. Head Height Variation to Base Height Control
The robot’s base height is controlled through VR head

height variation to provide intuitive vertical motion control:

∆hhead(t) = Hhead[2, 3]− href
head (60)

hpelvis(t) = hnominal + κ ·∆hhead(t) (61)

where hnominal = 0.75 m is the nominal pelvis height, κ =
0.5 is the scaling factor, and the pelvis height is constrained
within [0.3, 0.75] m to match training.

C. Wrist Position to Dual-Arm Inverse Kinematics
Hand controller poses are captured as 4x4 transformation

matrices and processed through coordinate transformations to
compute robot wrist positions.

1) Hand Controller Data Processing: VR hand controllers
provide left and right hand poses H

L/R
hand ∈ SE(3). These are

transformed through the same coordinate transformation:

H
L/R
wrist = T openxr

robot H
L/R
hand (T

openxr
robot )−1 (62)

2) Wrist Position Relative to Head Frame: The wrist po-
sitions are computed relative to the head frame with specific
offsets for left and right arms:

H
L/R
rel = H−1

headH
L/R
wrist T

L/R
unitree (63)

where T
L/R
unitree are the left/right arm-specific transformation

matrices. Additional workspace offsets are applied:

H
L/R
rel [0, 3]+ = 0.15 m (64)

H
L/R
rel [2, 3]+ = 0.45 m (65)



Fig. 6: Schematic of the teleoperation system. The system acquires multimodal inputs from VR headsets and remote controllers,
and processes them through custom algorithms to generate structured robot control commands in real time. The pipeline consists
of five key subsystems: (1) head rotation to torso orientation mapping, (2) head height variation to base height control, (3)
wrist position to dual-arm inverse kinematics, (4) finger position to dexterous hand control, and (5) remote controller input to
base locomotion commands. This modular design enables intuitive, precise, and responsive human-robot interaction.

3) Inverse Kinematics: The processed wrist poses are fed
to the inverse kinematics solver to compute joint angles for
the dual-arm system.

D. Finger Position to Dexterous Hand Control

Finger landmarks for both hands are captured and processed
to control the dexterous hand joints through coordinate trans-
formations and retargeting algorithms.

1) Finger Landmark Processing: VR hand tracking pro-
vides finger landmarks L

L/R
finger ∈ R25×3 for each hand. These

landmarks are transformed to robot coordinates and computed
relative to the wrist frame:

L
L/R
robot = T openxr

robot L
L/R
finger (66)

L
L/R
rel = (H

L/R
wrist )

−1L
L/R
robot (67)

L
L/R
dexterous = (T hand2dexterous)

TL
L/R
rel (68)

where T hand2dexterous transforms from hand coordinate frame
to the dexterous hand coordinate frame.

E. Remote Controller Input to Base Locomotion Commands

Remote controller joystick inputs provide intuitive base
locomotion control. The controller provides analog stick inputs
that are processed and mapped to robot base velocities:

ujoystick = [ux, uy, urot] ∈ [−1, 1]3 (69)
vx = deadband(ux, 0.1) · vx,max (70)
vy = deadband(uy, 0.1) · vy,max (71)
ωz = deadband(urot, 0.1) · ωmax · 1.2 (72)

where deadband(·) eliminates small unintentional inputs.
The x and y axes are independently deadbanded and mapped
to vx,max = 0.55 m/s and vy,max = 0.45 m/s, respectively,
enabling precise omnidirectional velocity control. The angular
velocity ωz is mapped similarly with ωmax = 1.2 rad/s.

F. System Integration and Real-Time Performance

All teleoperation commands are integrated at 100Hz and
transmitted to the ULC policy:

uteleop = [vx, vy, ωz, hpelvis,θtorso, q
L
arm, q

R
arm, q

L
hand, q

R
hand]

T

(73)

where θtorso = [yawclipped, rollclipped, pitchclipped]
T ∈ R3

represents the constrained torso orientation vector.

VI. EXPERIMENT

A. Experiments Setup

We compare the proposed ULC method with state-of-the-art
loco-manipulation controllers. The baselines include:

• HOMIE [19] A decoupled controller that uses reinforce-
ment learning for leg control and PD control for waist
yaw joint and arms.

• HOMIE-3-DoF-Waist An evolution of the HOMIE
pipeline, with unlocked three waist DoF for PD control

• FALCON [18] A decoupled controller that uses dual
policy for lower and upper body control with adaptive
force curriculum.

• AMO [21] A hierarchical humanoid loco-manipulation
controller that combines trajectory optimization with re-
inforcement learning, using a motion adaptation module
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Fig. 7: Comparison of reachable command ranges for different methods. Values show operational limits for root height (m),
orientations (rad), and arm control capabilities.

and a tracking controller for leg and waist control, and
the arms are controlled by PD.

• R2S2 [2] A skill-based whole-body controller that uses a
pre-trained skill library of primitive motions ensembled
into a unified latent space for efficient goal-reaching
tasks.

Our metrics include:
• Root Linear Velocity Tracking Error Ev

• Root Angular Velocity Tracking Error Eω

• Root Height Tracking Error Eh

• Root Yaw Orientation Tracking Error Ey

• Root Pitch Orientation Tracking Error Ep

• Root Roll Orientation Tracking Error Er

• Arm Joint Position Tracking Error Ea

All metrics are computed by rolling out 1024 parallel
environments in Isaaclab [65] for 50,000 steps and averaging
the tracking errors across all timesteps and environments.
This extensive evaluation ensures statistical significance and
captures the long-term tracking performance under diverse
operational conditions.

B. Comparison of Reachable Workspace

Fig 7 compares the reachable command ranges across dif-
ferent methods, revealing significant variations in workspace
capabilities.

HOMIE [19] and HOMIE-3-DoF-Waist employ PD con-
trol for waist joints, creating a fundamental decoupling be-
tween torso rotation and leg control. While this design en-
ables full yaw rotation capability (±2.62 rad) and maximum
root height range (0.3, 0.75 m), the legs cannot actively
participate in torso orientation control, severely constraining
the integrated whole-body workspace. HOMIE-3-DoF-Waist
extends to pitch and roll control but remains limited to
symmetric ranges (±0.52 rad) with PD contorled waist joints.
FALCON [18] prioritizes adaptive force curriculum learning
for precision under external loads, but this focus comes at
the cost of workspace coverage. The method suffers from
restricted yaw range (±1.0 rad) and elevated minimum root
height (0.5 m), limiting low-reaching capabilities. More crit-
ically, FALCON’s dual-arm control relies entirely on motion
capture data, creating a fundamental bottleneck for general-
ization. This mocap dependency severely limits robustness
under out-of-distribution (OOD) commands that deviate from
pre-recorded human demonstrations. AMO [21] addresses
the OOD limitation through its motion adaptation module,

demonstrating superior robustness beyond mocap constraints.
By unifying waist and leg control in a single model, AMO
successfully unlocks torso rotation capabilities and achieves
asymmetric pitch control (-0.52, 1.57 rad), enabling both
downward manipulation and upward reaching. However, the
method’s workspace remains constrained in roll orientation
(±0.46 rad) and arm control versatility compared to kinematic-
based approaches. R2S2 [2] utilizes a pre-defined skill library
compressed into a unified latent space for systematic goal-
reaching. While this approach enables efficient skill composi-
tion and maintains reasonable root height control (0.35, 0.75
m), the reliance on pre-defined primitives severely constrains
torso rotation capabilities. The method achieves only minimal
pitch control (0, 0.5 rad) and completely lacks yaw and roll
capabilities, fundamentally limiting whole-body coordination.
ULC overcomes these limitations through unified coordinated
control that integrates all degrees of freedom. Our approach
achieves maximum root height range (0.3, 0.75 m) enabling
both low-squatting and high-reaching motions, complete torso
rotation tracking across all axes including full yaw rotation
(±2.62 rad) matching the best existing capability, asymmetric
pitch control (-0.52, 1.57 rad) optimized for both downward
looking and upward reaching tasks, and enhanced roll stability
(±0.52 rad) for lateral manipulation. The procedurally sam-
pled dual-arm control strategy unlocks all kinematic degrees of
freedom without mocap constraints, providing unprecedented
manipulation versatility.

C. Comparison of Tracking Accuracy

Fig. 8 evaluates tracking performance across four scenarios
with commands sampled within each method’s operational
ranges from Tab. 7: (1) Whole command space: entire
operational workspace; (2) Edge command space: extreme
torso rotation cases; (3) Wrist loaded: 2kg external loads
on both wrists; (4) Command mutation: random command
delays IV-B (probability 0.5) during execution.

Locomotion Control Analysis: AMO demonstrates excep-
tional linear velocity tracking (Ev = 0.039 ± 0.008 m/s)
and angular velocity control (Eω = 0.061 ± 0.011 rad/s)
in the whole command space, attributed to its hierarchical
design combining trajectory optimization with RL tracking
controllers. This hybrid approach enables precise motion
planning that optimizes locomotion dynamics. ULC achieves
competitive performance (Ev = 0.068 ± 0.012 m/s, Eω =
0.127±0.018 rad/s) through unified whole-body control, while
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Fig. 8: Comparison of tracking accuracy for different methods across four representative scenarios. The figure shows the main
tracking errors and standard deviations under whole command space, edge command space, wrist loaded (2kg), and command
mutation (random delay) conditions. ULC consistently achieves superior overall tracking performance and robustness compared
to state-of-the-art baselines.

HOMIE and FALCON show moderate performance due to
their decoupled leg-arm architectures.

Torso Orientation Control: ULC, HOMIE-3-DoF-Waist
and AMO support full 3-DoF torso control capabilities. ULC
excels in yaw tracking (Ey = 0.037 ± 0.007 rad) and
achieves superior pitch (Ep = 0.034 ± 0.008 rad) and roll
(Er = 0.045 ± 0.009 rad) control. AMO shows competitive
yaw performance (Ey = 0.131±0.019 rad) but exhibits higher
pitch (Ep = 0.129± 0.020 rad) and roll (Er = 0.089± 0.015
rad) errors due to the complexity of coordinating trajectory
optimization with RL tracking. The waist degree of freedom
of HOMIE-3-DoF-Waist is completely controlled by PD, so it
performs poorly in tracking accuracy. HOMIE and FALCON
completely lack pitch/roll control capabilities, while R²S²
provides only limited pitch control.

Dual-Arm Tracking Performance: HOMIE and AMO
rely on PD controllers for arm tracking, resulting in similar
performance levels (HOMIE: Ea = 0.142± 0.019 rad, AMO:
Ea = 0.141 ± 0.018 rad). FALCON’s dedicated upper-body
RL policy achieves better arm tracking (Ea = 0.096± 0.014
rad) through learned force adaptation, but remains constrained
by mocap dependency. ULC outperforms all methods (Ea =
0.089 ± 0.013 rad) through residual action modeling and se-
quential skill acquisition, enabling precise arm control without
mocap constraints.

Robustness Under Extreme Conditions: In edge com-
mand space scenarios, architectural differences become pro-
nounced. HOMIE-3-DoF-Waist suffers severe degradation
(Ev = 0.221 ± 0.033 m/s, Eω = 0.418 ± 0.052 rad/s)
due to inadequate coordination between PD-controlled torso
and RL-controlled legs. FALCON’s dual-policy architecture

struggles with extreme conditions (Ev = 0.243± 0.037 m/s).
ULC maintains robust performance across all metrics through
unified control architecture.

External Load Adaptation: Under 2kg wrist loads, AMO
maintains its locomotion advantage (Ev = 0.045±0.009 m/s)
due to trajectory optimization’s ability to adapt to changing
dynamics. However, PD-based arm control in HOMIE and
AMO shows degradation under external loads, with HOMIE’s
arm tracking error increasing to Ea = 0.189 ± 0.031 rad.
FALCON’s force-adaptive curriculum provides some load ro-
bustness (Ea = 0.128± 0.021 rad), but ULC’s residual action
modeling achieves superior load adaptation across all metrics
(Ev = 0.072 ± 0.013 m/s, Ea = 0.119 ± 0.018 rad) while
maintaining precise orientation control (Ey = 0.041 ± 0.008
rad, Ep = 0.038± 0.009 rad).

Command Mutation Robustness: Under stochastic com-
mand delays, ULC demonstrates superior robustness with
minimal performance degradation (Ev = 0.076 ± 0.013 m/s,
Ea = 0.147 ± 0.021 rad), while other methods show signifi-
cant deterioration. AMO experiences substantial torso control
degradation (Ey = 0.246±0.039 rad, Ep = 0.221±0.036 rad)
due to trajectory optimization sensitivity to timing variations.
HOMIE and HOMIE-3-DoF-Waist suffers severe performance
loss across all metrics, confirming that the PD controller is
susceptible to sudden disturbances.

D. Ablation on Policy Training

Ablation studies are conducted to systematically evaluate
the contribution of each key component in the ULC training
pipeline. We consider four variants by removing one module
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Fig. 9: Quantitative results of ablation studies for key components in the ULC training pipeline. The column-normalized
heatmap shows that lower values indicate better tracking performance across all metrics.

Fig. 10: Time-series visualization of the doll pick-and-place task. Multiple sub-images illustrate the sequential execution process,
covering all key stages: squatting to pick up the doll, hand switching, and placing the doll at the target location.

at a time: Sequence Skill Acquisition, Residual Action Model,
Load Randomization, and Center-of-Gravity Tracking. The
quantitative results are visualized in Fig. 9 as a column-
normalized heatmap, where lower values indicate better track-
ing performance across all metrics. Evaluation was performed
with a wrist load of 2 kg.

Removing Sequence Skill Acquisition leads to a noticeable
increase in all metrics, highlighting the importance of progres-
sive skill composition for precise whole-body coordination.
Excluding the Residual Action Model results in higher errors
in both arm (Ea = 0.123 ± 0.014 rad) and root tracking
(Ev = 0.081 ± 0.012 m/s), confirming that residual learning
is critical for fine-grained motion adaptation. Without Load
Randomization, the model exhibits increased sensitivity to
external disturbances, as reflected by higher errors in all
metrics, especially in arm tracking (Ea = 0.105± 0.015 rad),
demonstrating the necessity of diverse training for general-
ization. Omitting Center-of-Gravity Tracking causes the most
significant performance drop in root-related metrics (Ev =
0.089± 0.013 m/s, Eω = 0.163± 0.024 rad/s), indicating that
explicit CoG supervision is essential for stable locomotion and
orientation control.

The full ULC model (Ours) consistently achieves the low-

est errors across all metrics (Ev = 0.069 ± 0.010 m/s,
Eω = 0.133 ± 0.019 rad/s, Eh = 0.056 ± 0.009 m, Ey =
0.017±0.003 rad, Ep = 0.035±0.006 rad, Er = 0.047±0.007
rad, Ea = 0.083 ± 0.012 rad), validating the effectiveness
of the unified training strategy. These results demonstrate
that each component is indispensable for achieving robust,
high-precision loco-manipulation, and their integration yields
significant performance gains over ablated variants.

E. Real World Results

We evaluate the performance of ULC in real-world scenarios
to validate how its height control, torso rotation capabilities,
and dual-arm tracking precision contribute to practical task
performance. We design a series of challenging manipulation
scenarios that require precise whole-body coordination.

1) Teleoperation Results: To demonstrate ULC’s effective-
ness as a low-level controller in practical applications, we
evaluate two representative teleoperation scenarios that require
coordinated locomotion and manipulation, as illustrated in
Fig. 10 and Fig. 11.

Pick and place the doll on the sofa: This task evalu-
ates ULC’s ability to perform coordinated whole-body ma-
nipulation through three key steps: (1) squatting down and



Fig. 11: Time-series visualization of the refrigerator task. Multiple sub-images illustrate the sequential execution process,
covering all five stages: picking up the bread, walking to the refrigerator, opening the door, placing the bread inside, and
closing the door.

Fig. 12: Time-series visualization of the push and walk experiments. The images illustrate the robot’s performance under
lateral push disturbances and during walking, demonstrating the robustness and stability of the proposed controller in dynamic
real-world scenarios.

grasping the doll on the floor using precise height control
and torso pitch adjustment; (2) standing up and pass the
doll to the other hand; (3) placing the doll onto the sofa
at a designated target location. As shown in Fig. 10, the
execution sequence demonstrates ULC’s locomotion stability
during complex height transitions and its ability to maintain
dynamic balance while executing coordinated arm movements
across different body configurations. The figure also presents
the tracking curves for selected joints, where the solid line
represents the actual state and the dashed line represents the
expected state from IK, with the dual-arm tracking error Ea

of 0.092 rad throughout the entire task execution phase.

Put the bread in the refrigerator: This task exemplifies
ULC’s ability to execute a complex, multi-step manipulation
sequence that integrates spatial navigation, dual-arm coordi-

nation, and dynamic interaction with the environment. The
robot must complete the following five steps: (1) use its right
hand to grasp the bread from the table, requiring precise arm
positioning and stable grasp control; (2) maintain a secure hold
on the bread while turning and walking to the refrigerator,
demonstrating robust locomotion and object stability during
whole-body movement; (3) open the refrigerator door with the
left hand, which involves coordinated dual-arm manipulation
and balance maintenance as one arm continues to hold the
bread; (4) place the bread inside the refrigerator, a step that
demands accurate and careful placement in a confined space;
(5) after releasing the bread, use the right hand to close the
refrigerator door, requiring the robot to re-engage the right
arm for environmental interaction. Throughout this process,
ULC demonstrates highly coordinated dual-arm and whole-



Fig. 13: Comparison of joint angle tracking errors for ULC and traditional PD control (gains: Kp = 80, Kd = 3) under
different external loads (0.5 kg, 1.0 kg, 1.5 kg) in real-world experiments. ULC consistently achieves lower errors than PD
control at all load levels, demonstrating superior force adaptation and robustness to external disturbances.

body control, maintaining stable manipulation and precise
object handling, real-world environments. Fig. 11 presents
the full teleoperated process, showcasing the system’s ability
to achieve smooth, accurate, and robust execution across all
steps. The consistently low arm tracking error Ea (0.103
rad) throughout the task further highlights ULC’s precision
and reliability in practical force interactive loco-manipulation
scenarios.

2) Case Study: Robust Stand and Walk: To qualitatively
evaluate the robustness and stability of ULC in real-world
scenarios, we conduct a series of stand and walk experiments
under challenging conditions. During the standing tests, the
robot is subjected to strong pushes from the left, right, front,
and back while maintaining an upright posture with the upper
body target angles set to zero. Notably, even when the robot
is pushed forcefully from any direction, it is able to maintain
balance and quickly recover to its original pose, demonstrating
the effectiveness of the center-of-gravity (CoG) tracking mod-
ule. The robot’s ability to resist disturbances without excessive
upper body sway or instability highlights the superior whole-
body coordination enabled by ULC.

For the walking experiments, the robot is commanded to
walk long distances in a straight line. Importantly, at the
moment of gait initiation, the robot does not exhibit any
forward lean in the upper body, which is a direct benefit
of explicit CoG tracking. This allows for natural and stable
walking without the need for pre-leaning or compensatory
motions.

Fig. 12 presents time-series visualizations of the robot
being pushed from the side and walking forward. The images
illustrate the robot’s rapid recovery from external disturbances
and its stable, confident gait during long-distance walking.
These results confirm that ULC provides reliable and robust
whole-body control for both static and dynamic tasks, instilling
strong confidence in its real-world deployment.

3) Real world Loaded Comparison: We conduct a con-
trolled experiment comparing ULC with traditional PD control
under external wrist loads of 0.5 kg, 1.0 kg, and 1.5 kg. ULC
and PD controller share the same PD parameters (PD gains:
Kp = 80, Kd = 3). Both methods are required to maintain
dual-arm poses with target joint angles set to zero (forearms
parallel to the ground). The tracking errors under each load



condition are visualized in Fig. 13.
Across all load levels, ULC consistently achieves lower joint

angle deviations than PD control. Notably, even at the highest
load of 1.5 kg, ULC maintains high tracking accuracy, while
PD control exhibits significant errors due to inadequate gravity
compensation. This performance gap is evident at every tested
load (0.5 kg, 1.0 kg, 1.5 kg), where ULC’s learned dynamics
naturally incorporate force adaptation, resulting in superior
robustness and precision. In contrast, PD control struggles
to maintain parallel positioning even without load, and its
errors increase substantially as the load increases. These results
validate the advantage of ULC in real-world manipulation
tasks requiring reliable force adaptation and precise tracking
under varying external disturbances.

VII. CONCLUSIONS AND LIMITATIONS

We presented ULC, a unified controller for humanoid loco-
manipulation that, to the best of our knowledge, is the first to
simultaneously achieve unified whole-body control, large oper-
ational workspace, and high-precision tracking. By integrating
all degrees of freedom in a single controller and leveraging
principled procedural command sampling, ULC enables robust
and versatile performance across a diverse set of tasks and
challenging scenarios. Extensive experiments demonstrate that
ULC outperforms prior decoupled or mocap-based methods in
tracking accuracy, workspace coverage, and robustness, estab-
lishing a new foundation for practical, deployable humanoid
loco-manipulation systems. Ablation studies further confirm
that each component of our framework is essential.

Despite these advances, ULC still has a key limitation:
the use of simplified locomotion commands precludes the
generation of complex leg patterns achievable through motion
capture approaches. Addressing this limitation and further
enhancing locomotion expressiveness and generalization to
even more complex real-world tasks will be the focus of future
work.
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APPENDIX

A. Communication Architecture

The teleoperation system employs a distributed communica-
tion architecture that coordinates multiple components across
different computational nodes. Dual cameras mounted on the
robot’s onboard computer transmit stereo images to the host
computer via TCP and ZeroMQ protocols. The host computer
processes these images for VR visualization while receiving
operator commands through a network router connection.
Robot actuators (dexterous hands and joints) communicate
bidirectionally with the host computer using DDS protocol,
transmitting states and receiving action commands. The system
uses an asynchronous architecture where the teleoperation
solver processes VR inputs to generate robot commands, while
a separate deployment module runs at 50Hz to continuously
read and execute the latest commands. This design ensures
responsive control while maintaining system modularity.

The complete communication architecture can be summa-
rized as follows:

Cameras TCP/ZeroMQ−−−−−−−→ Host Network−−−−→ VR Headset (74)

VR Headset Network−−−−→ Host DDS−−→ Solver (75)

Solver DDS−−→ Deployment DDS−−→ Robot Actuators (76)

This distributed architecture enables scalable and responsive
teleoperation while maintaining the modularity necessary for
system development and debugging.

B. Domain Randomization

We use domain randomization to simulate the sensor noise
and physical variations in the real-world. The randomization
parameters are shown in Table III.

Parameter Unit Range Operator

Angular Velocity rad/s ±0.2 scaling
Projected Gravity - ±0.05 scaling
Joint Position rad ±0.01 scaling
Joint Velocity rad/s ±1.5 scaling
Static Friction - [0.7, 1.0] uniform
Dynamic Friction - [0.4, 0.7] uniform
Restitution - [0.0, 0.005] uniform
Wrist Mass kg [0.0, 2.0] additive
Base Mass kg [-5.0, 5.0] additive

TABLE III: Domain randomization parameters. Additive ran-
domization adds a random value within a specified range to the
parameter, while scaling randomization adjusts the parameter
by a random multiplication factor within the range.

C. Reward Function

Our reward function is a sum of the following terms:
• Tracking Linear Velocity Reward (rvel): This term

encourages the robot to track the commanded linear
velocity in the xy-plane.

rvel := exp(−∥vxy − v∗xy∥22/σ2
vel),
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where vxy and v∗xy represent the actual and commanded
linear velocities, respectively. σvel is set to 0.5. Weight:
1.0.

• Tracking Angular Velocity Reward (rang): This term
encourages the robot to track the commanded angular
velocity.

rang := exp(−∥ωz − ω∗
z∥22/σ2

ang),

where ωz and ω∗
z represent the actual and commanded

angular velocities, respectively. σang is set to 0.5. Weight:
1.25.

• Root Height Tracking Reward (rheight): This term en-
courages tracking of the commanded pelvis height.

rheight := exp(−|h− h∗|2/σ2
height),

where h and h∗ are the actual and commanded root
heights. σheight is set to 0.4. Weight: 1.0.

• Upper Body Position Tracking Reward (rupper): This
term encourages tracking of arm joint positions.

rupper := exp(−∥qupper − q∗
upper∥22/σ2

upper),

where qupper and q∗
upper are the actual and desired upper

body joint positions. σupper is set to 0.35. Weight: 1.0.
• Torso Yaw Tracking Reward (ryaw): This term encour-

ages tracking of torso yaw orientation commands.

ryaw := exp(−e2yaw/σ2
torso),

where eyaw is the yaw orientation error. σtorso is set to
0.2. Weight: 0.25.

• Torso Roll Tracking Reward (rroll): This term encour-
ages tracking of torso roll orientation commands.

rroll := exp(−e2roll/σ2
torso),

where eroll is the roll orientation error. σtorso is set to
0.2. Weight: 0.25.

• Torso Pitch Tracking Reward (rpitch): This term encour-
ages tracking of torso pitch orientation commands with
higher weight.

rpitch := exp(−e2pitch/σ2
torso),

where epitch is the pitch orientation error. σtorso is set to
0.2. Weight: 0.5.

• Center-of-Gravity Tracking Reward (rCoG): This term
maintains stability by keeping the center of gravity near
the support base.

rCoG := exp(−∥pxy
CoG − pxy

feet∥
2
2/σ

2
CoG),

where pxy
CoG is the horizontal center of gravity projection

and pxy
feet is the midpoint between ankles. σCoG is set to

0.2. Weight: 0.5.
• Termination Reward: This term penalizes episode ter-

mination.
rter := −200.0 · Iterminated

where Iterminated is 1 if the episode terminates, otherwise
0.

• Z-axis Linear Velocity Reward: This term penalizes the
robot for moving along the z-axis.

rz := −1.0 · (vz)2

where vz is the z-axis linear velocity.
• Energy Reward: This term penalizes output torques to

reduce energy consumption.

re := −0.001 ·
∑
i

|τi · q̇i|

where τ represents the joint torques and q̇ represents the
joint velocities.

• Joint Acceleration Reward: This term penalizes exces-
sive joint accelerations to promote smooth motions.

rja := −2.5× 10−7 · ∥q̈∥22

where q̈ represents the joint accelerations of the config-
ured joints.

• Action Rate Reward: This term penalizes rapid changes
in actions to encourage smooth control.

rar := −0.1 · ∥at − at−1∥22

where at represents the current action and at−1 represents
the previous action.

• Base Orientation Reward: This term penalizes non-flat
base orientation to maintain an upright posture.

rori := −5.0 · (roll2 ·maskroll + pitch2 ·maskpitch)

where maskroll and maskpitch are adaptive masks based
on torso command magnitudes.

• Joint Position Limit Reward: This term penalizes joint
positions that exceed their soft limits.

rjpl := −2.0 ·
∑
i

max(|qi| − qi,limit, 0)

where qi represents the position of joint i, and qi,limit is
the soft limit.

• Joint Effort Limit Reward: This term penalizes exces-
sive torques on waist joints.

rjel := −2.0 ·
∑
i

max(|τi| − 0.999 · τi,max, 0)

where τi is the torque and τi,max is the maximum torque
limit.

• Joint Deviation Reward: This term penalizes joint po-
sitions that deviate from their default positions.

rjd :=− 0.15 ·
∑
i

|qi − qi,default|

− 0.3 ·
∑
j

|qj − qj,default|

where i represents hip yaw and ankle roll joints, and j
represents hip roll joints.

• Feet Air Time Reward: This term rewards appropriate
stepping behavior for bipedal locomotion.

rfat := 0.3 ·min(tair, 0.4)



where tair is the air time when exactly one foot is in
contact and velocity command is above 0.1 m/s.

• Feet Slide Reward: This term penalizes feet sliding
during ground contact.

rsl := −0.25 ·
∑
i

∥vi,xy∥2 · I(contacti)

where vi,xy is the horizontal velocity of foot i, and
I(contacti) indicates if the foot is in contact.

• Feet Force Reward: This term encourages maintaining
appropriate ground reaction forces.

rff := −3× 10−3 ·
∑
i

min(max(fz,i − 500, 0), 400)

where fz,i is the vertical ground reaction force on foot i.
• Feet Stumble Reward: This term penalizes lateral forces

that indicate stumbling.

rfs := −2.0 ·
∑
i

I(∥fxy,i∥2 > 5|fz,i|)

where fxy,i represents the horizontal ground reaction
forces.

• Flying State Reward: This term penalizes the robot
when it is airborne.

rfly := −1.0 · I(all feet off ground)

• Undesired Contacts Reward: This term penalizes unde-
sired contacts with the environment.

ruc := −1.0 ·
∑
i∈C

I (∥Fi∥2 > 1.0)

where C represents the set of contact points excluding
ankle contacts.

• Ankle Orientation Reward: This term penalizes exces-
sive ankle roll orientations.

rankle := −0.5 ·
∑
i

∥gravityxy,i∥22

where gravityxy,i is the projected gravity vector in each
ankle frame.

D. ULC Hyperparameters

We illustrate the hyperparameters of ULC in Table IV.

E. Architecture Details

We illustrate the network architecture of ULC in Table V.

Parameter Value

Number of Environments 8192
Training Iteration 100000
Environment Steps 24
Number of Training Epochs 5
Mini Batch Size 4
Max Clip Value Loss 0.2
Discount Factor 0.99
GAE discount factor 0.95
Entropy Regularization Coefficient 0.006
Learning rate 1.0e-3
Schedule adaptive
Desired KL 0.01
Max Grad Norm 1.0
Value Loss Coefficient 1.0
Observation History Length 6
Action Scale 0.25
Episode Length 20.0 s
Simulation Timestep 0.005 s
Control Decimation 4

TABLE IV: Hyperparameters of ULC.

Component Configuration

Actor Network

Input Layer Observation (History × Features)
Hidden Layer 1 Linear(Input → 1024) + ELU
Hidden Layer 2 Linear(1024 → 512) + ELU
Hidden Layer 3 Linear(512 → 512) + ELU
Hidden Layer 4 Linear(512 → 256) + ELU
Output Layer Linear(256 → 29)

Critic Network

Input Layer Observation (History × Features)
Hidden Layer 1 Linear(Input → 1024) + ELU
Hidden Layer 2 Linear(1024 → 512) + ELU
Hidden Layer 3 Linear(512 → 512) + ELU
Hidden Layer 4 Linear(512 → 256) + ELU
Output Layer Linear(256 → 1)

Policy Distribution

Distribution Type Gaussian
Initial Noise Std 1.0
Noise Type log

TABLE V: ULC network architecture details. The table shows
the configuration of both actor and critic networks with
identical architectures except for output dimensions.
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